## Signal Processing









Peter Stallinga, UAlg 2011

### MIEET. The levels of knowledge



## Signal processing. Example: cardiogram

Electrocardiography:



#### Is this person healthy? The information is there somehow, but how to extract it?

## Signal processing

Frequency analysis

Filtering

Noise

Fourier/Laplace Transform

(Pattern recognition)

#### ADC/DAC

ADC (Analog-Digital converter) DAC (Digital-Analog Converter)

Translate signal from analog to digital domain and back



### Signal, Noise and S/N

**Signal** is that part of the incoming voltages (currents) that contain the **useful information** 

**Noise** is that part of the incoming voltages (or currents) that contain non meaningful or **no information** 



The signal-to-noise ratio, S/N or SNR is the power ratio between the two (how much power,  $\sim V^2$ , is in them).

IALP 2011, Signal Processing, UAlg, Peter Stallinga - 6/26

## Signal, Noise and S/N

# **Noise** is random (or looks like it to us). It has a certain **probability function**.

It also often has a certain **frequency spectrum** (which shows the correlation between measurement points)



Time

#### IALP 2011, Signal Processing, UAlg, Peter Stallinga - 8/26

**Gray Noise**: Spectrum is inverse of sensitivity spectrum of ear (<u>sounds</u> equally loud at all frequencies)

**Brown(ian) Noise**: Caused by random motion of particles. Spectrum: ~1/f<sup>2</sup>

**Pink Noise**: Spectrum: ~1/f. Lower frequencies louder

White Noise: Spectrum: flat (~1). Equally loud at all frequencies

Noise types







Frequency (Hz)



#### IALP 2011, Signal Processing, UAlg, Peter Stallinga - 9/26

# **Brown(ian) Noise**: Caused by random motion of particles. Spectrum: ~1/f<sup>2</sup>

**Gray Noise**: Spectrum is inverse of sensitivity spectrum of ear (<u>sounds</u> equally loud at all frequencies)

White noise

# White Noise: Spectrum: flat (~1). Equally loud at all frequencies

**Pink Noise**: Spectrum: ~1/f. Lower frequencies louder







Frequency  $\rightarrow$ 



#### IALP 2011, Signal Processing, UAlg, Peter Stallinga - 10/26

**Gray Noise**: Spectrum is inverse of sensitivity spectrum of ear (sounds equally loud at all frequencies)

Brown(ian) Noise: Caused by random motion of particles. Spectrum: ~1/f<sup>2</sup>

#### **Pink Noise**: Spectrum: ~1/f. Lower frequencies louder

White Noise: Spectrum: flat (~1). Equally loud at all frequencies

Pink noise







Frequency  $\rightarrow$ 

IALP 2011, Signal Processing, UAlg, Peter Stallinga - 11/26

Gray Noise: Spectrum is inverse of sensitivity spectrum of ear (sounds equally loud at all frequencies)

Brown(ian) Noise: Caused by random motion of particles. Spectrum: ~1/f<sup>2</sup>

**Pink Noise**: Spectrum: ~1/f. Lower frequencies louder

Brown noise

#### White Noise: Spectrum: flat (~1). Equally loud at all frequencies





Frequency  $\rightarrow$ 





IALP 2011, Signal Processing, UAlg, Peter Stallinga - 12/26

Gray Noise: Spectrum is inverse of sensitivity spectrum of ear (sounds equally loud at all frequencies)

of particles. Spectrum: ~1/f<sup>2</sup>

**Brown(ian)** Noise: Caused by random motion

**Pink Noise**: Spectrum: ~1/f. Lower frequencies louder

White Noise: Spectrum: flat (~1). Equally loud at all frequencies







Frequency →





### Time vs. frequency





Signal in time Example:  $V(t) = \cos(\omega t)$  Signal in frequency  $V(\omega) = f(\omega)$ 

### Fourier/Laplace Transform

To convert from time domain to frequency domain we can use **Laplace Transform** and **Fourier Transform** 



Single-frequency signal  $\rightarrow$  Single-frequency spectrum (duh!)

### Fourier/Laplace Transform

To convert from time domain to frequency domain we can use **Laplace Transform** and **Fourier Transform** 

Time  $\rightarrow$ Frequency  $\rightarrow$ Example:  $V(t) = \delta(t-t_{0})$  $V(\omega) = 1$ 'Spike' signal  $\rightarrow$  Constant spectrum!!

#### Fourier/Laplace Transform

Fourier Transform for **periodic signals** ( $Ae^{if(\omega)\omega t}$ )



Periodic signal 
$$\rightarrow \omega$$
, 2 $\omega$ , 3 $\omega$ , 4 $\omega$ , 5 $\omega$ , .... etc.  
 $\omega = 2\pi/T$ 

IALP 2011, Signal Processing, UAlg, Peter Stallinga - 16/26

## Filtering

# Filtering then is the process of letting through only part of the spectrum





#### Example of a 'notch' filter (blocking part of the spectrum)

### Simple pass-filters

Simple examples of filters. Practical lecture on Analog Electronics:







Capacitor is <u>open</u> circuit for low frequencies!!

$$ω = 0. Y (out) = 0$$

$$Z_{\rm C} = \frac{1}{\mathrm{i}\omega C}$$

IALP 2011, Signal Processing, UAlg, Peter Stallinga - 20/26



Capacitor is <u>short</u> circuit for high frequencies!!

$$\omega = \infty$$
. Y (out) = X (in)

$$Z_{\rm C} = \frac{1}{i\omega C}$$

IALP 2011, Signal Processing, UAlg, Peter Stallinga - 21/26





#### IALP 2011, Signal Processing, UAlg, Peter Stallinga - 22/26





$$\frac{V_{o}}{V_{i}} = \frac{1/i\omega C}{R + 1/i\omega C} = \frac{1}{1 + i\omega RC} \qquad \qquad \omega = 0: V_{o}/V_{i} = 1$$
$$\omega = \infty: V_{o}/V_{i} = 0$$

IALP 2011, Signal Processing, UAlg, Peter Stallinga - 24/26



$$\omega = 0: V_{o}/V_{i} = 1 \qquad \qquad \omega = \infty: V_{o}/V_{i} = 0$$

$$\frac{V_{o}}{V_{i}} = \frac{1/i\omega C}{R + 1/i\omega C} = \frac{1}{1 + i\omega RC}$$

IALP 2011, Signal Processing, UAlg, Peter Stallinga - 25/26

